40^2+15^2=c^2

Simple and best practice solution for 40^2+15^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40^2+15^2=c^2 equation:



40^2+15^2=c^2
We move all terms to the left:
40^2+15^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+1825=0
a = -1; b = 0; c = +1825;
Δ = b2-4ac
Δ = 02-4·(-1)·1825
Δ = 7300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7300}=\sqrt{100*73}=\sqrt{100}*\sqrt{73}=10\sqrt{73}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{73}}{2*-1}=\frac{0-10\sqrt{73}}{-2} =-\frac{10\sqrt{73}}{-2} =-\frac{5\sqrt{73}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{73}}{2*-1}=\frac{0+10\sqrt{73}}{-2} =\frac{10\sqrt{73}}{-2} =\frac{5\sqrt{73}}{-1} $

See similar equations:

| 12x16=285 | | 12/6=8/x | | 10=4c-74 | | b^2-19b=240 | | 10=4c=74 | | x^2+40x-1425=0 | | 1+1/4(x-2)=21/2 | | 14.6+x=284.7 | | 8y+3+(12-7y)=49 | | (4x-3)/(2x-5)=0 | | 5x+19x-6=6(4x+5) | | (2x+5)-(4x+6)=10 | | --8/15a=9/10 | | 4a^2=49 | | y+36=62 | | 6x+29x-3=7(5x+7) | | (x+4)^2=-49 | | 5*3.5=2.5x | | 11x=9x+42 | | 2x+16=0.40x | | 15w^3+14w^2+3^w=0 | | 15w3+14w2+3w=0 | | (6x-18)/(x-3)=0 | | 8/12=n/21 | | -4r^2-4r=0 | | 1/5(x-3)=-1 | | (4x-1)^2=-16 | | 8.154^-4x+1=5 | | 18x-7=2x+9 | | 4-m^2-4m+5=0 | | 10x-4=2-3x+15 | | 6x-+7=38 |

Equations solver categories